
I Groupe de travail Cristal

July, 2003

An extension of HM(X) with bounded
existential and universal data-types

(To appear at ICFP’03)

Vincent Simonet

INRIA Rocquencourt — Cristal project

Vincent.Simonet@inria.fr
http://cristal.inria.fr/~simonet/

I Introduction 2

The initial problem

Flow Caml is an extension of the Objective Caml language with a type system
tracing information flow. Usual ML types are annotated by security levels,
which represent principals (e.g. human beings !alice, !bob, ...). A partial
order between these levels specifies legal information flow, hence the type
system has subtyping.

type (’a:level) client_info =
{ cash: ’a int;
send_msg: ’a int -> unit;
...

}

Problem: the types !alice client_info and !bob client_info are not
comparable.

I Introduction 3

ML with First-Class Abstract Types

Odersky and Läufer proposed an extension of ML where data-types
declarations may introduce existentially quantified variables:

type t = K of Exists ’a . ’a list * (’a -> unit)

This extension preserves type inference: the annotation provided by the
introduction and the matching of the constructor K are sufficient to guide
the type synthetizer.

let v1 = K ([3; 42; 111], print_int)
let v2 = K (["Hello"; "World"], print_string)
let iter = function K (x, f) -> List.iter f x

Existential type variables cannot escape their scope. The following piece of
code is ill-typed:

let open = function K (x, _) -> x

I Introduction 4

ML with First-Class Polymorphic Types

Symmetrically, universally quantified type variables can be introduced in
data-types declarations [Rémy, 1994]:

type t = L of ForAll ’a . (’a list -> ’a)

They are in particular useful in presence of abstract data-types:

let apply g = function K (x, f) -> f (g x)

is ill typed, but one can write:

let apply (L g) = function K (x, f) -> f (g x)

(Poor man’s first class polymorphism)

I Introduction 5

Our work

HM(X) is a generic constraint-based type inference system with let-
polymorphism. It generalizes Hindley-Milner type system.

It is parametrized by the first-order logic X, which is used to express types
and constraints relating them. The type inference problem is reduced to
solving constraints in the logic.

• We define a conservative extension of HM(X) with bounded existential
and universal data-types.

• We propose a realistic algorithm for solving constraints in the case of
structural subtyping.

Introduction

I The type system

Generating constraints

Solving constraints: The case of structural subtyping

Examples

The type system

I The type system 7

Types and constraints

We assume two distinct sets of existential ε and universal π type constructors.

τ ::= α, β, . . . | τ → τ | ε(τ̄) | π(τ̄) (type)

C,D ::= τ ≤ τ | C ∧ C | ∃α.C (constraint)

σ ::= ∀ᾱ[C].τ (scheme)

Every data-type must be introduced by a declaration:

ε(ᾱ) , ∃β̄[D].τ π(ᾱ) , ∀β̄[D].τ

I The type system 8

Subtyping

The interpretation of the subtyping order between types is left open. However,
→, ε and π types must be incomparable and the variances of the existential
and universal type constructors must fit their logical interpretation:

ε(ᾱ1) , ∃β̄1[D1].τ1 ε(ᾱ2) , ∃β̄2[D2].τ2

with β̄2 # fv(τ1) imply

D1 ∧ ε(ᾱ1) ≤ ε(ᾱ2) ² ∃β̄2.(D2 ∧ τ1 ≤ τ2)

π(ᾱ1) , ∀β̄1[D1].τ1 π(ᾱ2) , ∀β̄2[D2].τ2

with β̄1 # fv(τ2) imply

D2 ∧ π(ᾱ1) ≤ π(ᾱ2) ² ∃β̄1.(D1 ∧ τ1 ≤ τ2)

Several instances: unification, non-structural subtyping, structural subtyping.

I The type system 9

The language

We extend the λ-calculus with explicit constructs for packing and opening
existential and universal values:

e ::= x | λx.e | e e | let x = e in e (expression)

| 〈e〉ε | openε e with e

| 〈e〉π | openπ e

The (call-by-value) semantics is extended as follows:

openε 〈v〉ε with (λx.e) → (λx.e) v (ε)

openπ 〈v〉π → v (π)

I The type system 10

Standard HM(X) typing rules

Var
Γ(x) = ∀ᾱ[D].τ C ² D

C, Γ ` x : τ

Abs
C, Γ[x 7→ τ ′] ` e : τ

C, Γ ` λx.e : τ ′ → τ

App
C, Γ ` e1 : τ ′ → τ C,Γ ` e2 : τ ′

C, Γ ` e1 e2 : τ

Let
C, Γ ` e1 : σ C, Γ[x 7→ σ] ` e2 : τ

C, Γ ` let x = e1 in e2 : τ

Generalize
C ∧D, Γ ` e : τ ᾱ # fv(C, Γ)

C ∧ ∃ᾱ.D, Γ ` e : ∀ᾱ[D].τ

Sub
C, Γ ` e : τ ′ C ² τ ′ ≤ τ

C, Γ ` e : τ

Hide
C, Γ ` e : τ ᾱ # fv(Γ, τ)

∃ᾱ.C, Γ ` e : τ

I The type system 11

Typing rules for the new constructs

Exist
C, Γ ` e : τ ε(ᾱ) , ∃β̄[D].τ C ² D

C, Γ ` 〈e〉ε : ε(ᾱ)

OpenExist
C, Γ ` e1 : ε(ᾱ)

ε(ᾱ) , ∃β̄[D].τ ′ C, Γ ` e2 : ∀β̄[D].τ ′ → τ β̄ # fv(τ)
C, Γ ` openε e1 with e2 : τ

Poly
C, Γ ` e : ∀β̄[D].τ π(ᾱ) , ∀β̄[D].τ

C, Γ ` 〈e〉π : π(ᾱ)

OpenPoly
C, Γ ` e : π(ᾱ) π(ᾱ) , ∀β̄[D].τ C ² D

C, Γ ` e : τ

I The type system 12

Type safety

An expression e is well-typed if C,∅ ` e : τ holds for some satisfiable
constraint C.

The type system has standard subject-reduction and progress theorems.

“Well-typed expressions do not go wrong”

Introduction

The type system

I Generating constraints

Solving constraints: The case of structural subtyping

Examples

Generating constraints

I Generating constraints 14

Outline

We define an algorithm for computing principal typing judgments:

LΓ ` e : τM Ã C

The algorithm must be correct: for all Γ, e and τ ,

LΓ ` e : τM, Γ ` e : τ

and complete: for all C, Γ, e and τ ,

if C, Γ ` e : τ then C ² LΓ ` e : τM.

I Generating constraints 15

Core language

LΓ ` x : τM = ∃ᾱ.(C ∧ τ ′ ≤ τ)
where Γ(x) = ∀ᾱ[C].τ ′

LΓ ` λx.e : τM = ∃α1α2.(LΓ[x 7→ α1] ` e : α2M ∧ α1 → α2 ≤ τ)

LΓ ` e1 e2 : τM = ∃α.(LΓ ` e1 : α → τM ∧ LΓ ` e2 : αM)

LΓ ` let x = e1 in e2 : τM = LΓ[x 7→ ∀α[C].α] ` e2 : τM ∧ ∃α.C

where C = LΓ ` e1 : αM

I Generating constraints 16

Existential and universal data-types

We introduce a non-standard construct in constraints:

∀β̄.D B C interpreted as “ ∃β̄.D ∧ ∀β̄D ⇒ C ”

LΓ ` 〈e〉ε : τM = ∃ᾱ.(∃β̄.(LΓ ` e : τ ′M ∧D) ∧ ε(ᾱ) ≤ τ)

LΓ ` openε e1 with e2 : τM = ∃ᾱ.(LΓ ` e1 : ε(ᾱ)M ∧ ∀β̄.D B LΓ ` e2 : τ ′ → τM)
where ε(ᾱ) , ∃β̄[D].τ ′

LΓ ` openπ e : τM = ∃ᾱ.(LΓ ` e : π(ᾱ)M ∧ ∃β̄.(D ∧ τ ′ ≤ τ))

LΓ ` 〈e〉π : τM = ∃ᾱ.(∀β̄.D B LΓ ` e : τ ′M ∧ π(ᾱ) ≤ τ)
where π(ᾱ) , ∀β̄[D].τ ′

I Generating constraints 17

Summary

An expression e is well-typed in HM∃∀(X) in and only if the constraint
∃α.L∅ ` e : αM is satisfiable in the logic X. This constraint belongs to the
following language:

C,D ::= τ ≤ τ | C ∧ C | ∃α.C | ∀β̄.D B C

where every bound β̄.D of a universal quantification comes from a data-type
declaration.

It remains to provide algorithms that solve these constraints.

Introduction

The type system

Generating constraints

I Solving constraints: The case of structural subtyping

Examples

Solving constraints: The case of
structural subtyping

I Solving constraints: The case of structural subtyping 19

Overview

We need an algorithm for solving constraints which include a restricted form
of universal quantification and implication.

On the one-hand, efficient (polynomial) algorithms that decide top-level
implication of constraints (C1 ² C2, where all free variables are implicitely
universally quantified) are known.

On the other hand, Kuncak and Rinard recently showed [LICS 2003] that the
first order theory of structural subtyping is decidable, but their algorithm has
a non-elementary complexity.

We strike a compromise between expressiveness and efficiency:

• thanks to the “weak” interpretation of ∀β̄.D B C which implies ∃β̄.D,

• by restricting the form of the quantification bounds in every construct
∀β̄.D B C.

I Solving constraints: The case of structural subtyping 20

A model of structural subtyping

Let a variance ν be one of ⊕ (covariant), ª (contravariant) and ¯ (invariant).

We assume given a set of symbols ϕ. Every symbol has a fixed arity a(ϕ)
and a signature sig(ϕ) = [ν1, . . . , νa(ϕ)]. Then ground types are defined by:

t ::= ϕ(t1, . . . , ta(ϕ)) (ground type)

Symbols of arity 0 are ground atoms: we suppose they are partially ordered
by the lattice order ≤0. Then, subtyping is defined by:

ϕ ≤0 ϕ′

ϕ ≤ ϕ′
sig(ϕ) = [ν1, . . . , νn] ∀i ti ≤νi t′i

ϕ(t1, . . . , tn) ≤ ϕ(t′1, . . . , t
′
n)

≤⊕ Ã ≤
≤ª Ã ≥
≤¯ Ã =

I Solving constraints: The case of structural subtyping 21

Shapes

In structural subtyping, two comparable types must have the same shape.
We define the relation t ≈ t′ (read: t has the same shape as t′) by:

ϕ ≈ ϕ′
sig(ϕ) = [ν1, . . . , νn] ∀i ti ≈νi t′i

ϕ(t1, . . . , tn) ≈ ϕ(t′1, . . . , t
′
n)

≈⊕ Ã ≈
≈ª Ã ≈
≈¯ Ã =

≈ is the reflexive, symmetric, transitive closure of ≤. Its equivalence classes
are lattices.

I Solving constraints: The case of structural subtyping 22

Expansion and decomposition

In structural subtyping, the two following equivalence rules hold:

Expansion: ϕ(τ̄) ≤ α ≡ ∃ᾱ.(ϕ(ᾱ) = α ∧ ϕ(τ̄) ≤ ϕ(ᾱ))
≡ ∃∃〈ϕ(ᾱ) = α〉.(ϕ(τ̄) ≤ ϕ(ᾱ))

Decomposition: sig(ϕ) = [ν1, . . . , νn]
ϕ(τ1, . . . , τn) ≤ ϕ(τ ′1, . . . , τ

′
n) ≡ τ1 ≤ν1 τ ′1 ∧ · · · ∧ τn ≤νn τ ′n

Our algorithm consists in rewriting the input constraint into a solved form:

η ::= ϕ | α (atom)

R ::= ∅ | η ≤ η ∧R | η ≈ η ∧R (multiset of atomic constraints)

S ::= R | ∃∃〈φ(ᾱ) = α〉.S (solved form)

(In ∃∃〈φ(ᾱ) = α〉.S, we require α 6∈ fv(S)).
By orienting the two above rules from left to right, we obtain an algorithm
which rewrites any conjunction of inequalities into a solved form. It remains
to eliminate quantifiers.

I Solving constraints: The case of structural subtyping 23

Eliminating existential quantifiers

Goal: ∃β.S Ã S′

∃β.[] commutes with ∃∃〈φ(ᾱ) = α〉.[]
∃β.∃∃〈φ(ᾱ) = α〉.S Ã ∃∃〈φ(ᾱ) = α〉.∃β.S if α 6= β (and β /∈ ᾱ)
∃α.∃∃〈φ(ᾱ) = α〉.S Ã ∃ᾱ.S

∃β.[] can be eliminated when it reaches the multiset of atomic inequalities

∃β.R Ã {η1 ¦ η2 | η1 ¦ η2 ∈ R and η1, η2 6= β}
∪ {η1 ¦1¦2 η2 | η1 ¦1 β ∈ R and β ¦2 η2 ∈ R}

where ¦ ranges over ≈, ≤ and ≥.

∃β.(β ≤ α1 ∧ β ≤ α2) Ã α1 ≈ α2

I Solving constraints: The case of structural subtyping 24

Restricting universal quantification bounds

We consider a constraint ∀β̄.D B C.

• Existential quantifiers in D can be fused with the universal one:

∀β̄.(∃ᾱ.D) B C ≡ ∀β̄ᾱ.D B C

• Type constructors in D can be eliminated by expansion and decomposition,
e.g.

∀β.(β ≤ α1 → α2) B C ≡ ∀β1β2.(α1 ≤ β1 ∧ β2 ≤ α2) B C[β1 → β2/β]

Thus, we may assume that D is a conjunction of inequalities involving atoms.

I Solving constraints: The case of structural subtyping 25

Restricting universal quantification bounds

Consider a constraint ∀β̄.D B C and a variable β ∈ β̄. Three situations may
arise:

• β has no external bound in D, i.e. is only related to variables of β̄. In this
case, C cannot constrain its shape.
For instance ∀β.true B β ≤ α1 → α2 is not satifiable.

• β has one lower and/or upper bound(s) in D.

∀β.(β ≤ α) B (β ≤ α′1 → α′2)
≡ ∃∃〈α1 → α2 = α〉.(∀β.(β ≤ α1 → α2) B (β ≤ α′1 → α′2))
≡ ∃∃〈α1 → α2 = α〉.(∀β1β2.(α1 ≤ β1 ∧ β2 ≤ α2) B (α′1 ≤ β1 ∧ β2 ≤ α′2))
≡ ∃∃〈α1 → α2 = α〉.(α′1 ≤ α1 ∧ α2 ≤ α′2)

[...]

I Solving constraints: The case of structural subtyping 26

Restricting universal quantification bounds

[...]

• β has several lower or upper bounds in D.

∀β.(β ≤ α1 ∧ β ≤ α2) B (β ≤ α)
≡ ∀β.(β ≤ α1 u α2) B (β ≤ α)
≡ α1 u α2 ≤ α

We exclude this third case.

Some examples of allowed quantification bounds:

(1) ∀β1β2β3.(β1 ≤ β2 ≤ β3) B · · ·
(2) ∀β1β2.(α1 ≤ β1 ≤ α2 ∧ α1 ≤ β2 ≤ α2) B · · ·
(3) ∀β1β2.(ϕ1 ≤ β1 ≤ β2 ≤ ϕ2) B · · ·

I Solving constraints: The case of structural subtyping 27

Eliminating universal quantifiers

Goal: ∀β̄.D B S Ã S′

∀β̄.D B [] commutes with ∃∃〈φ(ᾱ) = α〉.[]
∀β̄.D B (∃∃〈φ(ᾱ) = α〉.S)Ã∃∃〈φ(ᾱ) = α〉.(∀β̄.D[φ(ᾱ)/α] B S) α 6∈ β̄
∀αβ̄.D B (∃∃〈φ(ᾱ) = α〉.S)Ã∀ᾱβ̄.D[φ(ᾱ)/α] B S α bounded
∀αβ̄.D B (∃∃〈φ(ᾱ) = α〉.S)Ã failure α unbounded

∀β̄.D B [] can be eliminated when it reaches the multiset

∀β̄.D B R → (∃β̄.D)
∪{ubβ̄.D(η1) ≤ lbβ̄.D(η2) | η1 ≤ η2 ∈ R\D∗}
∪ {shβ̄.D(η1) ≈ shβ̄.D(η2) | η1 ≈ η2 ∈ R\D∗}

ubβ̄.D(η) is the upper bound of η under ∀β̄.D B · · ·
lbβ̄.D(η) is the lower bound of η under ∀β̄.D B · · ·
shβ̄.D(η) is the shape of η under ∀β̄.D B · · ·

I Solving constraints: The case of structural subtyping 28

Summary

Our algorithm rewrites an arbitrary constraint into a solved form.

C Ã S

A solved form is satisfiable if and only if its multiset is satisfiable.

η ::= ϕ | α (atom)

R ::= ∅ | η ≤ η ∧R | η ≈ η ∧R (multiset of atomic constraints)

S ::= R | ∃∃〈φ(ᾱ) = α〉.S (solved form)

Introduction

The type system

Generating constraints

Solving constraints: The case of structural subtyping

I Examples

Examples

I Examples 30

The bank example

In the lattice of security levels, we have one security level for every client
(!alice, !bob, ...). We let !clients be their least upper bound.

type client_info = Exists ’a with ’a < !clients .
{ cash: ’a int;
send_msg: ’a int -> unit;
...

}

I Examples 31

The bank example (2)

The function send_balances iterates over a list of clients and sends to each
of them a message indicating their current balance:

let rec send_balances = function
[] -> []

| { cash = x; send_msg = send } :: tl ->
send x; send_balances tl

De-sugaring this example in the syntax of the current talk, we realize that
the function which corresponds to the second case of the pattern matching

λx, send , tl .(send x; send balances tl)

must have the type scheme

∀α[α ≤ !clients].
α int → (α int → unit) → client info list → unit

I Examples 32

The bank example (3)

The function illegal_flow tries to send information about one client to
another client:

let illegal_flow = function
{ cash = x1 } :: { send_msg = f2 } :: _ -> f2 x1

| _ -> ()

Typing this piece of code yields the constraint

∀β1β2.(β1 t β2 ≤ !clients) B (β1 ≤ β2)

which is not satisfiable.

I Examples 33

The bank example (4)

The function total computes the total balance of the bank from the clients
file:

let rec total = function
[] -> 0

| { cash = x } :: tl -> x + total tl

It receives the type scheme

client info list → !clients int

I Conclusion 34

Future work

• We intend to extend our generic type inference engine for structural
subtyping, Dalton, in order to handle the new construct.

• Then, it will be possible to extend the Flow Caml system with existential
and universal data-types.

• We study the possibility to make security levels also values of the Flow
Caml language: this would allow to perform some dynamic tests (whose
correctness must be verified statically) on existentially quantified variables
when opening data-structures.

I Conclusion 35

Possible work

• Giving a faithful description of the solving algorithm which describes the
simplification techniques used in the implementation.

• Studying constraints resolution for other forms of subtyping.

• Introducing subtyping in more powerful extensions of ML with first order
polymorphism (PolyML, MLF, ...)

