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The initial problem

Flow Caml is an extension of the Objective Caml language with a type system
tracing information flow. Usual ML types are annotated by security levels,
which represent principals (e.g. human beings !alice, !bob, ...). A partial
order between these levels specifies legal information flow, hence the type
system has subtyping.

type (’a:level) client_info =
{ cash: ’a int;
send_msg: ’a int -> unit;
...

}

Problem: the types !alice client_info and !bob client_info are not
comparable.
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ML with First-Class Abstract Types

Odersky and Läufer proposed an extension of ML where data-types
declarations may introduce existentially quantified variables:

type t = K of Exists ’a . ’a list * (’a -> unit)

This extension preserves type inference: the annotation provided by the
introduction and the matching of the constructor K are sufficient to guide
the type synthetizer.

let v1 = K ([3; 42; 111], print_int)
let v2 = K (["Hello"; "World"], print_string)
let iter = function K (x, f) -> List.iter f x

Existential type variables cannot escape their scope. The following piece of
code is ill-typed:

let open = function K (x, _) -> x
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ML with First-Class Polymorphic Types

Symmetrically, universally quantified type variables can be introduced in
data-types declarations [Rémy, 1994]:

type t = L of ForAll ’a . (’a list -> ’a)

They are in particular useful in presence of abstract data-types:

let apply g = function K (x, f) -> f (g x)

is ill typed, but one can write:

let apply (L g) = function K (x, f) -> f (g x)

(Poor man’s first class polymorphism)
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Our work

HM(X) is a generic constraint-based type inference system with let-
polymorphism. It generalizes Hindley-Milner type system.

It is parametrized by the first-order logic X, which is used to express types
and constraints relating them. The type inference problem is reduced to
solving constraints in the logic.

• We define a conservative extension of HM(X) with bounded existential
and universal data-types.

• We propose a realistic algorithm for solving constraints in the case of
structural subtyping.



Introduction

I The type system

Generating constraints

Solving constraints: The case of structural subtyping

Examples

The type system



I The type system 7

Types and constraints

We assume two distinct sets of existential ε and universal π type constructors.

τ ::= α, β, . . . | τ → τ | ε(τ̄) | π(τ̄) (type)

C,D ::= τ ≤ τ | C ∧ C | ∃α.C (constraint)

σ ::= ∀ᾱ[C].τ (scheme)

Every data-type must be introduced by a declaration:

ε(ᾱ) , ∃β̄[D].τ π(ᾱ) , ∀β̄[D].τ
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Subtyping

The interpretation of the subtyping order between types is left open. However,
→, ε and π types must be incomparable and the variances of the existential
and universal type constructors must fit their logical interpretation:

ε(ᾱ1) , ∃β̄1[D1].τ1 ε(ᾱ2) , ∃β̄2[D2].τ2

with β̄2 # fv(τ1) imply

D1 ∧ ε(ᾱ1) ≤ ε(ᾱ2) ² ∃β̄2.(D2 ∧ τ1 ≤ τ2)

π(ᾱ1) , ∀β̄1[D1].τ1 π(ᾱ2) , ∀β̄2[D2].τ2

with β̄1 # fv(τ2) imply

D2 ∧ π(ᾱ1) ≤ π(ᾱ2) ² ∃β̄1.(D1 ∧ τ1 ≤ τ2)

Several instances: unification, non-structural subtyping, structural subtyping.
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The language

We extend the λ-calculus with explicit constructs for packing and opening
existential and universal values:

e ::= x | λx.e | e e | let x = e in e (expression)

| 〈e〉ε | openε e with e

| 〈e〉π | openπ e

The (call-by-value) semantics is extended as follows:

openε 〈v〉ε with (λx.e) → (λx.e) v (ε)

openπ 〈v〉π → v (π)
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Standard HM(X) typing rules

Var
Γ(x) = ∀ᾱ[D].τ C ² D

C, Γ ` x : τ

Abs
C, Γ[x 7→ τ ′] ` e : τ

C, Γ ` λx.e : τ ′ → τ

App
C, Γ ` e1 : τ ′ → τ C,Γ ` e2 : τ ′

C, Γ ` e1 e2 : τ

Let
C, Γ ` e1 : σ C, Γ[x 7→ σ] ` e2 : τ

C, Γ ` let x = e1 in e2 : τ

Generalize
C ∧D, Γ ` e : τ ᾱ # fv(C, Γ)

C ∧ ∃ᾱ.D, Γ ` e : ∀ᾱ[D].τ

Sub
C, Γ ` e : τ ′ C ² τ ′ ≤ τ

C, Γ ` e : τ

Hide
C, Γ ` e : τ ᾱ # fv(Γ, τ)

∃ᾱ.C, Γ ` e : τ
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Typing rules for the new constructs

Exist
C, Γ ` e : τ ε(ᾱ) , ∃β̄[D].τ C ² D

C, Γ ` 〈e〉ε : ε(ᾱ)

OpenExist
C, Γ ` e1 : ε(ᾱ)

ε(ᾱ) , ∃β̄[D].τ ′ C, Γ ` e2 : ∀β̄[D].τ ′ → τ β̄ # fv(τ)
C, Γ ` openε e1 with e2 : τ

Poly
C, Γ ` e : ∀β̄[D].τ π(ᾱ) , ∀β̄[D].τ

C, Γ ` 〈e〉π : π(ᾱ)

OpenPoly
C, Γ ` e : π(ᾱ) π(ᾱ) , ∀β̄[D].τ C ² D

C, Γ ` e : τ
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Type safety

An expression e is well-typed if C,∅ ` e : τ holds for some satisfiable
constraint C.

The type system has standard subject-reduction and progress theorems.

“Well-typed expressions do not go wrong”
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Outline

We define an algorithm for computing principal typing judgments:

LΓ ` e : τM Ã C

The algorithm must be correct: for all Γ, e and τ ,

LΓ ` e : τM, Γ ` e : τ

and complete: for all C, Γ, e and τ ,

if C, Γ ` e : τ then C ² LΓ ` e : τM.
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Core language

LΓ ` x : τM = ∃ᾱ.(C ∧ τ ′ ≤ τ)
where Γ(x) = ∀ᾱ[C].τ ′

LΓ ` λx.e : τM = ∃α1α2.(LΓ[x 7→ α1] ` e : α2M ∧ α1 → α2 ≤ τ)

LΓ ` e1 e2 : τM = ∃α.(LΓ ` e1 : α → τM ∧ LΓ ` e2 : αM)

LΓ ` let x = e1 in e2 : τM = LΓ[x 7→ ∀α[C].α] ` e2 : τM ∧ ∃α.C

where C = LΓ ` e1 : αM
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Existential and universal data-types

We introduce a non-standard construct in constraints:

∀β̄.D B C interpreted as “ ∃β̄.D ∧ ∀β̄D ⇒ C ”

LΓ ` 〈e〉ε : τM = ∃ᾱ.(∃β̄.(LΓ ` e : τ ′M ∧D) ∧ ε(ᾱ) ≤ τ)

LΓ ` openε e1 with e2 : τM = ∃ᾱ.(LΓ ` e1 : ε(ᾱ)M ∧ ∀β̄.D B LΓ ` e2 : τ ′ → τM)
where ε(ᾱ) , ∃β̄[D].τ ′

LΓ ` openπ e : τM = ∃ᾱ.(LΓ ` e : π(ᾱ)M ∧ ∃β̄.(D ∧ τ ′ ≤ τ))

LΓ ` 〈e〉π : τM = ∃ᾱ.(∀β̄.D B LΓ ` e : τ ′M ∧ π(ᾱ) ≤ τ)
where π(ᾱ) , ∀β̄[D].τ ′
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Summary

An expression e is well-typed in HM∃∀(X) in and only if the constraint
∃α.L∅ ` e : αM is satisfiable in the logic X. This constraint belongs to the
following language:

C,D ::= τ ≤ τ | C ∧ C | ∃α.C | ∀β̄.D B C

where every bound β̄.D of a universal quantification comes from a data-type
declaration.

It remains to provide algorithms that solve these constraints.
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Overview

We need an algorithm for solving constraints which include a restricted form
of universal quantification and implication.

On the one-hand, efficient (polynomial) algorithms that decide top-level
implication of constraints (C1 ² C2, where all free variables are implicitely
universally quantified) are known.

On the other hand, Kuncak and Rinard recently showed [LICS 2003] that the
first order theory of structural subtyping is decidable, but their algorithm has
a non-elementary complexity.

We strike a compromise between expressiveness and efficiency:

• thanks to the “weak” interpretation of ∀β̄.D B C which implies ∃β̄.D,

• by restricting the form of the quantification bounds in every construct
∀β̄.D B C.
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A model of structural subtyping

Let a variance ν be one of ⊕ (covariant), ª (contravariant) and ¯ (invariant).

We assume given a set of symbols ϕ. Every symbol has a fixed arity a(ϕ)
and a signature sig(ϕ) = [ν1, . . . , νa(ϕ)]. Then ground types are defined by:

t ::= ϕ(t1, . . . , ta(ϕ)) (ground type)

Symbols of arity 0 are ground atoms: we suppose they are partially ordered
by the lattice order ≤0. Then, subtyping is defined by:

ϕ ≤0 ϕ′

ϕ ≤ ϕ′
sig(ϕ) = [ν1, . . . , νn] ∀i ti ≤νi t′i

ϕ(t1, . . . , tn) ≤ ϕ(t′1, . . . , t
′
n)

≤⊕ Ã ≤
≤ª Ã ≥
≤¯ Ã =
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Shapes

In structural subtyping, two comparable types must have the same shape.
We define the relation t ≈ t′ (read: t has the same shape as t′) by:

ϕ ≈ ϕ′
sig(ϕ) = [ν1, . . . , νn] ∀i ti ≈νi t′i

ϕ(t1, . . . , tn) ≈ ϕ(t′1, . . . , t
′
n)

≈⊕ Ã ≈
≈ª Ã ≈
≈¯ Ã =

≈ is the reflexive, symmetric, transitive closure of ≤. Its equivalence classes
are lattices.
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Expansion and decomposition

In structural subtyping, the two following equivalence rules hold:

Expansion: ϕ(τ̄) ≤ α ≡ ∃ᾱ.(ϕ(ᾱ) = α ∧ ϕ(τ̄) ≤ ϕ(ᾱ))
≡ ∃∃〈ϕ(ᾱ) = α〉.(ϕ(τ̄) ≤ ϕ(ᾱ))

Decomposition: sig(ϕ) = [ν1, . . . , νn]
ϕ(τ1, . . . , τn) ≤ ϕ(τ ′1, . . . , τ

′
n) ≡ τ1 ≤ν1 τ ′1 ∧ · · · ∧ τn ≤νn τ ′n

Our algorithm consists in rewriting the input constraint into a solved form:

η ::= ϕ | α (atom)

R ::= ∅ | η ≤ η ∧R | η ≈ η ∧R (multiset of atomic constraints)

S ::= R | ∃∃〈φ(ᾱ) = α〉.S (solved form)

(In ∃∃〈φ(ᾱ) = α〉.S, we require α 6∈ fv(S)).
By orienting the two above rules from left to right, we obtain an algorithm
which rewrites any conjunction of inequalities into a solved form. It remains
to eliminate quantifiers.
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Eliminating existential quantifiers

Goal: ∃β.S Ã S′

∃β.[] commutes with ∃∃〈φ(ᾱ) = α〉.[]
∃β.∃∃〈φ(ᾱ) = α〉.S Ã ∃∃〈φ(ᾱ) = α〉.∃β.S if α 6= β (and β /∈ ᾱ)
∃α.∃∃〈φ(ᾱ) = α〉.S Ã ∃ᾱ.S

∃β.[] can be eliminated when it reaches the multiset of atomic inequalities

∃β.R Ã {η1 ¦ η2 | η1 ¦ η2 ∈ R and η1, η2 6= β}
∪ {η1 ¦1¦2 η2 | η1 ¦1 β ∈ R and β ¦2 η2 ∈ R}

where ¦ ranges over ≈, ≤ and ≥.

∃β.(β ≤ α1 ∧ β ≤ α2) Ã α1 ≈ α2
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Restricting universal quantification bounds

We consider a constraint ∀β̄.D B C.

• Existential quantifiers in D can be fused with the universal one:

∀β̄.(∃ᾱ.D) B C ≡ ∀β̄ᾱ.D B C

• Type constructors in D can be eliminated by expansion and decomposition,
e.g.

∀β.(β ≤ α1 → α2) B C ≡ ∀β1β2.(α1 ≤ β1 ∧ β2 ≤ α2) B C[β1 → β2/β]

Thus, we may assume that D is a conjunction of inequalities involving atoms.
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Restricting universal quantification bounds

Consider a constraint ∀β̄.D B C and a variable β ∈ β̄. Three situations may
arise:

• β has no external bound in D, i.e. is only related to variables of β̄. In this
case, C cannot constrain its shape.
For instance ∀β.true B β ≤ α1 → α2 is not satifiable.

• β has one lower and/or upper bound(s) in D.

∀β.(β ≤ α) B (β ≤ α′1 → α′2)
≡ ∃∃〈α1 → α2 = α〉.(∀β.(β ≤ α1 → α2) B (β ≤ α′1 → α′2))
≡ ∃∃〈α1 → α2 = α〉.(∀β1β2.(α1 ≤ β1 ∧ β2 ≤ α2) B (α′1 ≤ β1 ∧ β2 ≤ α′2))
≡ ∃∃〈α1 → α2 = α〉.(α′1 ≤ α1 ∧ α2 ≤ α′2)

[...]
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Restricting universal quantification bounds

[...]

• β has several lower or upper bounds in D.

∀β.(β ≤ α1 ∧ β ≤ α2) B (β ≤ α)
≡ ∀β.(β ≤ α1 u α2) B (β ≤ α)
≡ α1 u α2 ≤ α

We exclude this third case.

Some examples of allowed quantification bounds:

(1) ∀β1β2β3.(β1 ≤ β2 ≤ β3) B · · ·
(2) ∀β1β2.(α1 ≤ β1 ≤ α2 ∧ α1 ≤ β2 ≤ α2) B · · ·
(3) ∀β1β2.(ϕ1 ≤ β1 ≤ β2 ≤ ϕ2) B · · ·
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Eliminating universal quantifiers

Goal: ∀β̄.D B S Ã S′

∀β̄.D B [] commutes with ∃∃〈φ(ᾱ) = α〉.[]
∀β̄.D B (∃∃〈φ(ᾱ) = α〉.S)Ã∃∃〈φ(ᾱ) = α〉.(∀β̄.D[φ(ᾱ)/α] B S) α 6∈ β̄
∀αβ̄.D B (∃∃〈φ(ᾱ) = α〉.S)Ã∀ᾱβ̄.D[φ(ᾱ)/α] B S α bounded
∀αβ̄.D B (∃∃〈φ(ᾱ) = α〉.S)Ã failure α unbounded

∀β̄.D B [] can be eliminated when it reaches the multiset

∀β̄.D B R → (∃β̄.D)
∪{ubβ̄.D(η1) ≤ lbβ̄.D(η2) | η1 ≤ η2 ∈ R\D∗}
∪ {shβ̄.D(η1) ≈ shβ̄.D(η2) | η1 ≈ η2 ∈ R\D∗}

ubβ̄.D(η) is the upper bound of η under ∀β̄.D B · · ·
lbβ̄.D(η) is the lower bound of η under ∀β̄.D B · · ·
shβ̄.D(η) is the shape of η under ∀β̄.D B · · ·
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Summary

Our algorithm rewrites an arbitrary constraint into a solved form.

C Ã S

A solved form is satisfiable if and only if its multiset is satisfiable.

η ::= ϕ | α (atom)

R ::= ∅ | η ≤ η ∧R | η ≈ η ∧R (multiset of atomic constraints)

S ::= R | ∃∃〈φ(ᾱ) = α〉.S (solved form)
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The bank example

In the lattice of security levels, we have one security level for every client
(!alice, !bob, ...). We let !clients be their least upper bound.

type client_info = Exists ’a with ’a < !clients .
{ cash: ’a int;
send_msg: ’a int -> unit;
...

}
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The bank example (2)

The function send_balances iterates over a list of clients and sends to each
of them a message indicating their current balance:

let rec send_balances = function
[] -> []

| { cash = x; send_msg = send } :: tl ->
send x; send_balances tl

De-sugaring this example in the syntax of the current talk, we realize that
the function which corresponds to the second case of the pattern matching

λx, send , tl .(send x; send balances tl)

must have the type scheme

∀α[α ≤ !clients].
α int → (α int → unit) → client info list → unit
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The bank example (3)

The function illegal_flow tries to send information about one client to
another client:

let illegal_flow = function
{ cash = x1 } :: { send_msg = f2 } :: _ -> f2 x1

| _ -> ()

Typing this piece of code yields the constraint

∀β1β2.(β1 t β2 ≤ !clients) B (β1 ≤ β2)

which is not satisfiable.
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The bank example (4)

The function total computes the total balance of the bank from the clients
file:

let rec total = function
[] -> 0

| { cash = x } :: tl -> x + total tl

It receives the type scheme

client info list → !clients int
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Future work

• We intend to extend our generic type inference engine for structural
subtyping, Dalton, in order to handle the new construct.

• Then, it will be possible to extend the Flow Caml system with existential
and universal data-types.

• We study the possibility to make security levels also values of the Flow
Caml language: this would allow to perform some dynamic tests (whose
correctness must be verified statically) on existentially quantified variables
when opening data-structures.
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Possible work

• Giving a faithful description of the solving algorithm which describes the
simplification techniques used in the implementation.

• Studying constraints resolution for other forms of subtyping.

• Introducing subtyping in more powerful extensions of ML with first order
polymorphism (PolyML, MLF, ...)


